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these descriptions. This research examines several computational problems asso-
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problems includes the design and implementation of particular algorithms. Their
efficiency and flexibility is compared with that of the human visual processor.
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Vision Algorithms and Psychophysics

1.0 Introduction: The Problem and Goal

"Seeing" requires the construction of symbolic descriptions of the external world.
The most useful symbolic descriptions will be representations for each of the vari-
ous objects in the three-dimensional scene. These objects, in turn, may be broken
down further into more detailed modular representations that may include the
various attributes of each object such as its color, texture, or the shape and rela-
tive motion of its parts. These latter properties are thus our basic building blocks
from which more complicated descriptions are built. Vision understanding re-
quires showing how such object properties can be represented internally, and how
they can be brought together to create a description suitable for recognition or
manipulation. This then, is our ultimate goal: to propose and implement a scheme
for representing 3D shapes in a manner suitable for recognition.

To move toward this goal, the research has proceeded along several parallel
tracks. The first is the development of a theory for representing 3D shapes, or
their 2D projections onto the image. Such a theory requires first that the shape be
spatially isolated. Hence the second research track is the identification of object
candidates, using texture (scale-space) and visual motion (or stereo). A third
track is a machine implementation of the proposed schemes. And finally, a fourth
research area interwoven among the others is the psychophysical explorations that
provide hints about viable vision algorithms.

2.0 The Codon Theory and Its Implementation

Shape is one of the most important ways of categorizing and identifying objects.
In Figure 1, the very simple shape of an eye immediately implies "animal". Seeing
the "beak" would further constrain the class to be "bird". In contrast, an isolated
patch of texture is almost meaningless. This simple observation shows that rather
simple shapes can provide a powerful representation for recognizing objects. Sil-
houettes or cartoons reinforce this notion. What, then, are the basic elements LJ
from which we can build simple shapes and make such powerful inferences from
image contours?

In 1982, Hoffman & Richards proposed a primitive representation for the.......

shape of 2D or plane curves. The key concept was that the representation should
,(,,des

I ....
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Richards Vision Algorithms

Figure 1 The left-hand panels show two portions of the bird-one a texture,
the other a 'shape'. Clearly the simple shape of an eye alone provides an
important pointer to the class of object, namely 'animal', whereas the texture
patch alone offers few clues.

make explicit the parts of a shape (or 3D object), because objects are described
most naturally in terms of their "parts".

To find the parts of an object or even of a plane curve, one notes that when
two parts are joined, a concavity in the surface will be formed, which appears as a
minima of curvature or cusp in the image (see Figure 2). This concavity property is
a transversal one---stable under perturbations of the way the parts may be joined.
Transversality is thus a fundamental regularity of natural objects. The resulting
concavities in the 2D silhouette are known to be visually important (Atteneave,
1954; Biederman, 1984). Consequently both psychophysical and computational
arguments underlie our scheme for segmenting a shpe into "parts" for recognition.

To represent the shape of the "parts" isolated by the concavities, or minima
of curvature, Hoffman & Richards (1982, 1983, 1984) propose as a first abstract
description that we use the singularities of curvature. These are the maxima, min-
ima and zeroes of curvature along a plane curve. Such a representation has the

2
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Figure 2 Joining parts generally produces concavities in the silhouette.

important feature that it is invariant under similarity transforms-rotation, trans-
lation or dilation. The basic elements of the representation are called "codons",
which are illustrated in Figure 3. Each codon simply represents one of five pos-
sible relations between the maxima, minima and zeros of curvature. They are
identified by their number of inflections (zeroes). Shapes described in terms of
a sequence of codons have several interesting formal properties, such as making
skewed symmetry explicit, and being sensitive to the choice of figure and ground
(see Figure 4)-two important perceptual attributes (Hoffman & Richards, 1982,
1984).

Over the past few years, the research on the codon scheme for representing
shapes has focused on four problems: (a) a rigorous mathematical statement of
the transversality motion and its generalization to smooth shapes, (b) topological
constraints on possible smooth 2D (image) contours defined by codon strings,
(c)implementation, and (d) predicting 3D shape from a 2D (image) contour.

First we will summarize some work on the transversality regularity that is
critical to a formal definition of a "part boundary".

2.1 Transversality and "Parts"

When two surfaces intersect they intersect trarwversally. This means that the
tangent planes to the two intersecting surfaces are of different orientations at each
point where they intersect, implying that there is a discontinuity of the tangent
plane to the surface of the new composite object at each point along the contour

3
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Figure 3 The primitive codon types. Zeroes of curvature are indicated by
dots, minima by slashes. The straight line (oo) is a degenerate case included for
completeness, although it is not treated in the text. (See Richards & Hoffman,
1984, for definitions.)

of intersection (see Figure 2). Contours of concave discontinuity are thus the part
boundaries.

Consider now what happens if the concave discontinuity at the part bound-
ary is smoothed as if a membrane were stretched across the discontinuity in the
intersecting surfaces. Where then is the part boundary on the smoothed surface?
Intuitively, one might choose the locus having greatest curvature. Hence we have
proposed the following rule for partitioning smooth surfaces into parts:

Negative Minima Partitioning Rule: Divide a surface into parts at negative
minima of the principal curvatures along their associated lines of curvature.

The proof that this rule indeed captures our intuitive notion of the part
boundary is quite difficult, but has recently been completed by Bennett & Hoffman
(1986). The thrust of the proof is to show that the smoothing of a concave
discontinuity on a surface will produce local extremum of surface curvature in
the neighborhood. The proof thus provides a solid mathematical foundation to
our part boundary notion for 3D shapes. Given this mathematical rigor, we can
now determine how the 3D boundary will appear when projected into the image.
Although the boundary will generally not be a point of extremal curvature, we
expect that 2D extrema of (negative) curvature will lie near the projection of a
3D part boundary. The most common case where the projection has a cusp in the
occluding contour has already been treated by Hoffman & Richards (1984).

4
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Figure 4 Skewed symmetry is obvious in the codon string because half the
sequence is reversed, ignoring the sign of the codon (left frame). Figure-ground
reversal changes the codon string because maxima and minima of curvature are
exchanged, providing a simple explanation for Rubin's face-vase illusion.

2.2 Constraints on Codons

Clearly any plane curve can be described by a sequence of codons, for all curves
can be characterized by a sequence of the extrema of curvature. However, once one
imposes restrictions on the behavior of a plane curve, the sequence of curvature
extrema may not be arbitrary. One example is the class of plane curves that are
smooth and have no cusps. Included in this class are the smooth plane curves that
represent the canonical outlines of smooth 3D shapes.

To see that not all sequences of codons are possible if the curve is smooth, refer
to Figure 3 once again. Note that a 1- can not follow a 1- codon unless a cusp is
allowed. Similarly, a 1+ can not follow a 1+ , because if such a join is attempted
either a cusp will be created or, if the curve is indeed smooth, the 1+ codon would
have to be transformed into a type 2. To specify all legal smooth codon strings,
we will first enumerate all pairs, and then show what pair substitutions are legal

for one element in a sequence of pairs, thereby creating all possible triples.

5
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THIRD CODON

LEGAL CODON PAIRS 0- 0+  1- 1.- 2
+ * - + 1* -

TAIL HEAD TAIL HEAD TAIL HEAD TAIL HEAD TAIL HEAD TAIL HEAD

0-0- - 1+ +] + I+ +1
0-1- + + + J+ +] +

0-2 - 4+ + + 1- +]

0+0- + + [+ +1 + +

0-1 + - + + 1+ +] +

I-0" + + + [+ +) +

1-I, - I+ +] + + J+ +1

1 0- + - + + [+ +] +
rI*- + + [+ +1 + +

'2 +- + + [+ +] +

2 0- -+ +] + + [+ +1

2 1 - + + [+ +] +

2 2 - - 1+ +) + + + +1

NUMBER OF LEGAL 5 2 3 3 5

PAIR SUBSTITUTIONS

NUMBER OF 9 4 6 8 9
PAIR SUBSTITUTIONS

Note. The third codon can either follow or precede the pair. A (+ )indicates a proper join Because
of symmetry, there are an equal number of total pluses in the head and tail columns.

Figure 5 Table 1: Legal smooth codon triplets. The third codon can either
follow or precede the pair. A (+) indicates a proper join. Because of symmetry,
there are an equal number of total pluses in the head and tail columns.

Define the "tail" of a codon as the region about the first minima encountered
when traversing the curve. The "head" of the codon is the subsequent minima.
A smooth string of two codons is then allowable only if the head of the first
codon has the same sign of curvature as the tail of the second codon in the string.

To enumerate the possible codon pairs for a smooth contour, we require that
the curvature of both the head and tail of a middle codon match the tail of its
successor or the head of its predecessor in the string. All such legaI I-airs are given

6
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0+ 0+ 1- I 2 2
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Figure 6 Legal smooth, closed codon pairs. Figure is indicated by cross
hatching. Part boundaries are noted by the slashes.

in the left column of Figure 5. There are only 13 legal pairs out of a possible 25
combinations.

If we now require that the curve be closed smoothly on itself, then this con-
straint drastically reduces the number of legal pairs, for now the head and tail
of the pairs must have the same sign. Inspecting Figure 5, we see immediately
that only 0- 0-, 0-2, 0+ 0+ , 1- 1+ and 2 2 qualify. These shapes are shown
in Figure 6. Surprisingly, now there are only three such legal shapes out of the
possible 25 combinations! According to codon theory, the "ellipse", the "peanut"

and the "dumbbell" are the three most primitive shapes. Note that the ellipse has
no "parts", the peanut has one part boundary, and the dumbbell has two parts. It
will be these three primitive shapes that our implementation will seek in images,
to be described in a later section.

In a similar manner, we can enumerate the class of all possible smooth-closed
shapes that are topologically similar in their "bumps" and dents". There are
not very many forms of such curves. For example, a seven codon sequence has
78,125 possible combinations, but only 96 are allowable (see Richards & Hoffman,
1984, for proof). Figure 7 shows legal smooth, closed plane curves for codon
strings of length three and four. Note that even four codon elements can yield
quite descriptive-looking shapes, such as the "fetus" or "animal" in the lower
right. Furthermore, it should be obvious that combinations of closed codon shapes

7
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Codon Triples (6)

TI T2 T3 T4 T5 T6

000 01+,1" 0-,1-1+ 1,2,1+  2,2,2 2,2,0

Codon Quods (12)

Q2 Q3 04 Q506

Q7 08 Q9 Q10 OIl 012

Figure 7 Legal smooth, closed codon triple and quadruples.

embedded within one another can represent a wide range of complex figures. The
"eye" of Figure 1, which is simply one ellipse within another, 's one example. Or a

"face" which is often depicted by an ovoid with two simple ellipses for the "eyes"

and a "peanut" shape for the mouth, would be another example. How, then, can

the codon shapes be extracted from images in order to build such representation?

3.0 Codon Implementation

3.1 Description Algorithm

In order to represent codons within codons, such as in the eye or face example, we

Gaussian filter our images at several scales, using a pyramid scheme proposed by

8
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Figure 8 A Gaussian pyramid structure using the mask shown on the left
:- produces a "pyramid" of images (also shown on the left). These images are

used to obtain the two binary pyramids of image "Snoopy", as shown in the
right panel.

Burt and Adelson (Burt, 1982; Burt & Adelson, 1983). Figure 8 shows the output

of this first stage of processing of the image "Snoopy". Note that the algorithm

gives us two pyramids--one capturing the "dark" blobs, the other the "light"

blobs. We now are able to create a blob hierarchy, where blobs within blobs are
4. specified as a linked-list tree-structure. Because Gaussian masks are used, we are
"N guaranteed that our blob hierarchy will be well behaved (Koenderink, 1984; Yuille

& Poggio, 1984).

With all the blobs located (some in more than one pyramid level), we next

- generate an edge list for each blob. Starting at the top of the blob, we encode the

edge in a counter-clockwise fashion. Our algorithm is an adaptation of a standard
edge crawl, using 8-way connectivity. Between a pixel and the previous pixel in
the edge list there is a "tangent" - one of eight directions. To find the next pixel in

the sequence we project a vector normal to this simple tangent vector (90 degrees

clockwise rotation) and then sweep this vector counter-clockwise until it finds the

next pixel. In this fashion we "hunt" between object and background and generate
.the edge list. The implementation is simplified by using only the eight possible

vectors in an 8-connected area around the pixel.

'iN
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At this point a tangent could be computed at each edge point using a standard
set of edge masks. Since we are dealing with "blobs" it makes more sense to

compute the principal normal. This also turns out to be computationally efficient.
Whereas the tangent points along the edge of the blob, the principal normal points

towards the center. Consider then an edge point and the points immediately
surrounding it. Each surrounding point that is part of the blob (signal) can be
thought to pull on rubber bands attached to an imaginary vector emanating from
the edge point. The sum of these pulls will tend to point the vector towards the
center of the blob, and hence the vector will approximate the principal normal.
The computational scheme for implementing this algorithm is described in Dawson
& Treese (1984). The output of the algorithm is thus the normal to the outline
of the blob. The tangent at each point is simply 90' to this orientation. Figure 9
shows one example for the "dumbbell"-shaped eyebrow of Snoopy.

Because the codon scheme is based upon extrema of curvature, we now must
differentiate the tangent versus arc length along the blob outline. In the upper
right panel of Figure 9 the tangent versus arc length is given by the upper curve
of the graph. Its derivative is obtained simply by applying the "edge" operator
shown in the same panel to obtain curvature versus arc length (lower curve on

graph). The extremities of curvature used to specify the codons and hence the
shape of the blob can now be read off directly (see Dawson & Treese, 1984).

3.2 Sketch of the "See" Machine

A large part of the effort over the past three years was devoted to software and
hardware development. Our "See" machine is a VAX 11/750 computer with a
400 megabytes fixed disc, linked to an Adage 3000 image processor. The Adage
has 512 x 512 x 24 bits resolution and is our principal image processing device,
performing the Gaussian pyramid convolutions in about 17 seconds. It is also
used to generate "natural" images. Other peripherals include several single-frame
graphics terminals, a matrix color camera, a Fairchild CCD camera and several
vidicons eventually intended for color and stereo input. Still under development

is an Ethernet connection to the Artificial Intelligence lab, and the capability for
inputting motion sequences taken with a portable video camera.

The VAX runs Unix 4.2. Over the past year much special purpose software
has been written to make the "See" Machine a user-friendly system suitable for
both graphics and implementation of the codon scheme. Over one man-year has

10
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Figure 9 The upper left panel illustrates the principal normal encoding
scheme for the sub-blob of Snoopy's eyebrow. The upper right shows how
curvature along the blob's outline is computed. A second example for the
super ordinate blob of Snoopy's head outline is shown in the third panel.

been spent solely on software development (see Appendix 1 for a list of packages
written).

. .
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4.0 Inferring 3D Shape from 2D Contour

Although an infinity of 3D objects could generate any given 2D shape, we usually

infer only one 3D object from its 2D projection. What are the constraints that

restrict this infinity of choices? With Jan Koenderink, we have been studying this

problem. Our aim is to predict the rough topology of the perceived 3D shape,
given a silhouette such as those illustrated in Figure 7. Specifically, we wish

to specify the Gaussian curvature of the inferred 3D surface (Hilbert & Cohn-

Vossen, 1952). Koenderink & van Doorn took a major step in this direction in

1976, when they proved that the sign of the Gaussian curvature of points on the 3D
surface is the saem as the sign of curvature of their projections into the silhouette.
This theorem greatly restricts the class of inferred 3D surfaces, but by itself is
not powerful enough to specify a unique 3D shape. A second constraint is an
interpretation rule that we have been exploring:

3D Shape Interpretation Rule: Do not propose undulations of the 3D surface
without evidence for such.

The above rule is an extension of the "general position" restriction, which requires
that the view of an object is not a special one and is stable under perturbation.
For our purposes, the restriction states that a slight shift in viewpoint should

not change the topology of the viewed structure, such as suddenly revealing a
bump or dent in the surface that was previously hidden by occlusion. This inter-
pretation rule, together with the above mathematical property, seems to be the
primary forces that drive our interpretation of silhouettes (Richards, Koenderink
& Hoffman, 1985).

5.0 Groupings and "Glue"

Most attempts to interpret images focus upon image contours. Hence a large
part of image processing is concerned with edge detection algorithms. Our early
attempts to isolate shapes also proceeded in this manner, using an algorithm
called "CARTOON" (Richards et al., 1982). Such edge-finding schemes when used
on natural images are almost guaranteed to yield broken contours, which must
be subsequently "glued" together appropriately. One method for identifying the

pieces of contour that should be linked is to provide color or texture labels.
Our current scheme which is based upon "blobs" does not suffer this problem,

for all "blobs" are guaranteed to have closed boundaries. Nevertheless, sometimes

12
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Independence of Crorspoint and
Opposite Slope Sign

(A) (B)

E(C) )

I ___ _l _ __J

X1  X2  X1 X2

Wvelength

Figure 10 Graphs of image intensity (ordinate) versus wavelength (abscissa).
Two wavelength samples, X1 and A2 , are shown. An image region yields two
samples of intensity, one for each wavelength, and is represented by the line seg-
ment connecting the two sample values, a) & c) Two examples of the spectral
crosspoint (Rubin & Richards, 1982). a) & b) Two examples of the opposite
slope sign condition. This is the minimal configuration that shows different
ordinalities. Note that the crosspoint and opposite slope sign condition are
completely independent, since they can occur together (a), or each can occur
alone (b and c), or neither can occur (d).

different parts of the same object will appear as isolated blobs (such as the two
eyes in a face or during occlusions) and it is useful to be able to assign material-
property labels to the isolated blobs to provide indices for appropriate groupings.
Color, texture and motion are the prime candidates for such labels.

13
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'a,

Figure 11 Ambiguity of the velocity field. (a) the arrows represent two
possible velocity fields that are consistent with the changing image. (b) The
curve C1 rotates, translates and deforms over time to yield the curve C2 . The
velocity of the point p is ambiguous.

5.1 Using Spectral Information to Represent Material Categories.

Earlier, Rubin & Richards (1982) had shown how an operator called the spectral
cross-point could be used to find material changes across an edge. This condition

is depicted in Figure 10. Also shown in the same figure is a second condition, called
the opposite-slope sign, which can be used to categorize the spectral composition
of surfaces. In brief, this new condition describes the crude spectral shape of a
pigment in terms of its derivatives of absorption versus wavelength. Details are
given in a MIT A.I. Lab. Memo 764 by Rubin & Richards (1984). The theory
has implications for both psychology and neurophysiology. In particular, Hering's
notion of opponent colors and psychologically unique primaries, and Land's results
in two-color projection can be interpreted as dkfferent aspects of the visual system's
goal of categorizing materials. Also, the theory provides two basic interpretations
of the function of double-opponent color cells described by neurophysiologists.

5.2 Texture Fields

We have begun some work on representing the local texture properties of a "blob"

in terms of the four components of a linear flow field (i.e. dilation, rotation,
shear and deformation). This approach is new because it attempts to infer the
local organizations of the texture directly without first establishing correspondence
(Richards, 1984). There are some formal similarities to Ullman's work in structure-

from-motion which are also being explored.

14
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6.0 Visual Motion

Being able to compute the movement in the changing retinal image is critical to
an implementation of the codon theory, for it is perhaps the single most powerful
method of isolating "blobs" of greatest interest. Such a description of the move-
ment is not provided to our visual system directly, however; it must be inferred
from the pattern of changing intensity that reaches the eye. Hildreth (1984a,b)
has studied this problem in detail.

One serious obstacle to computing general motion is that the local motion
measurements generally provide only one component of the local velocity (this is
the aperture problem illustrated in Figure 11). To recover the full velocity field re-
quires constraining the possible range of solutions. Hildreth proposes a smoothness

constraint, which is based on the physical assumption that surfaces are generally
smooth. A theoretical analysis of the conditions under which these assumptions
yields the correct velocity field has been completed (Hildreth, 1984). An algo-
rithm has also been devised and implemented, using several examples that permit
comparison with psychological observations. Examples of particular interest are
the rotating spiral and the barber pole illusion, where the true velocity vectors
are not seen either by the algorithm nor by the human observer (Figure 12). Such
failures consistent with human perception give credibility to Hildreth's formula-

tion, suggesting it may be the basis for motion analysis in the most powerful vision
machine known--our own!

7.0 Summary

All plane curves may be described by a linked list of codons. For smooth, closed
plane curves, the codon sequences enable us to enumerate shapes of increasing
complexity. The "ellipse" "peanut" and "dumbbell" are the simplest shapes ac-
cording to the theory. Even these simple shapes, when embedded in a hierarchy,
provide very powerful indices for object recognition.

A nice feature of the codon theory is that the descriptions are computable
from images, as we have shown. Current work in progress is the creation of a
completely automatic package that will deliver a hierarchy of codon descriptions
for a 512 x 512 static image. At a later date we will add a motion capability for

single blob isolation along the lines Hildreth has proposed.
At present, theoretical work has been concentrating on what assertions about

3D shape can be made from the 2D codons. Metric information required for
a more detailed description of a "part" is also being considered. Possibilities in-

15
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Figure 12 (a) Left: Rotating spiral. (a) The true velocity field for a logarith-
mic spiral rotating in the image about the point 0. (b) the initial perpendicular
velocity vectors. (c) The computed velocity field of least variation. (b) Right:
The barberpole illusion. (a) A circular helix on an imaginary cylinder, rotating
about the vertical axis of the cylinder. (b) The two-dimensional projection of
the helix and its velocity field. (c) The initial perpendicular velocity vectors.
(d) The computed velocity field of least variation.

clude abstracting qualitative descriptors of part-shapes such as as "knob", "neck",
"bump", "dent", "fold", "finger " , etc. The relations between blobs and their sub-
blobs must also be made explicit. However, at present we have little insight how
this should be done, with the exception of UlIman's paper on "Visual Routines",
together with some crude psychophysical observations that we have tentatively
begun to explore. Over the next few years, therefore, our primary efforts will be
in three areas: 1) supplementing the codon description with axial-based informa-
tion; 2) using the primitive codon features for stereo and motion matching, and 3)
curvature psychophysics--determining the psychological basis for extracting cur-
vature, allowing a comparision between computational and biological approaches
encoding 2D shape.

16
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8.0 Appendix 1: Software Developed

Over 200 programs have been written so far for the work of this grant. The

programs range from simple subroutines to major packages and systems programs.
Here we list the major classes of programs and describe a few examples.

Packages

PYRAMID: This code generates the Gaussian Pyramid from an input image. We
have three versions of this code. The original version was developed on a Symbolics
3600 Lisp machine, the next version on our VAX, and the final version is in Adage
3000 BPS microcode. Since this routine is basic to our work work, we feel that
the speed improvement (a factor of 10) in the final version was worth the effort.

BLOB: A package for generating the first level symbolic blob descriptors from a
Gaussian Pyramid. The images are made into binary images, and these are used
to generate a tree structure of blobs. A blob is represented by its location, size,
outline, tangents, and pyramid level. Additional constraints, for example color
and motion, on the definition of the blobs will be used to reduce the number of
blobs and improve their definition.

CODON: This package takes the edge list generated by the BLOB package and
generates a Codon description. It differentiates the curve tangents, and applies al-
gorithms to define extrema of curvature. Additional programs are used for display,

test, and rudimentary matching of symbolic descriptions.

CARTOON: We originally wrote the CARTOON package on the PDP 11/23. This
re-write of the package takes advantage of the VAX's increased performance. The
CARTOON package has a user-friendly interface and allows users to manipulate
images by doing convolutions, thresholds, color coding, acquiring, saving, and
restoring, etc.

FRACTALS: This package allows the generation of a limited class of fractal pat-
terns. We are interested in these patterns as potential descriptors of form and
texture in complex images.

OHIO: We have modified the Ohio Rendering Package provided by Prof. Frank
Crow to run on the Adage 3000. This package allows us to generate realistic

objects with shaded surfaces, multiple light sources, et:. Used for studying the
perception of objects.
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SPHERES: A package for generating spheres with various shading, reflectance,
and light-source functions. Used for studying the perception of reflectance and
specularity.

Systems Programs

We have written drivers, linkers and controllers to effectively use the new hardware
acquired in part on this grant.

IK: This is the Adage 3000 (Ikonas) system driver. This is a modification of
code originally provided by Ron Gordon of Bell Laboratories. Our code is now a
distributed Berkeley 4.2 Unix driver for this machine.

RILMOD: We use the GIA/RIL microcode assembler for the Adage 3000 (provided
by the University of North Carolina). Extensive modifications of the RIL linker
have been made to improve performance and support our hardware.

MC68: Code to utilize the Motorola 68000 processor on the Adage 3000. This
enables us to load and run programs, handle interrupts and access the other hard-
ware on the Adage from the 68000.

Slave Machines

Our PDP-11's may be used either as stand-alone machines for image collection
and processing, or as "slave" machines performing specific functions under the
direction of the VAX.

SENDII, GRABII, IMAGEII: Allow the VAX to control a PDP-11 used as a
remote graphics and image processor.

SLAVE: A remote graphics and image processing that runs on the PDP-I l's. Per-
forms such functions as drawing lines, text, circles, etc., acquiring and displaying
images.

Libraries

A variety of libraries have been written to support the research program. A library
is a collection of routines that serve a common goal.
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LIKNEW: The New Ikonas library contains routines for controlling the Adage
3000, graphics (lines, circles, blocks, text, etc.), image acquisition, save and restore,
etc. This library contains over 60 subroutines, and includes an extensive shared
data base for specification of the Adage parameters.

GRAPHICS: A collection of simple and advanced graphics routines written in
portable C code so they can be used on a variety of machines.

USEFUL: A collection of useful tools and routines. Used in raost of our programs.

Communications

Our VAX is linked (currently via RS-232 lines) to the main Al machine (OZ) and
our "slave" PDP-11's. These connections will be replaced by Ethernet links.

UURT, RTU and UNET: Communication and file transfer between the VAX and
a PDP-11. Allows a PDP-11 to appear as a "virtual" VAX terminal. This is an
extensive re-write of code provided by the Center for Cognitive Science at M.I.T.

PR: Remote printing of text files on various printers.

OZLINK, OZTALK: Communication and file transfer (using the KERMIT proto-
col) between the VAX and the OZ (AI) machine.

Tests and Demonstrations

TEST programs include programs for testing the Adage 3000's various compo-
nents, for testing the communication links, and for testing developing code. The
DEMONSTRATION packages link components and other packages to demon-
strate such things as the entire blob/codon system and the graphics capability of
the Adage 3000.

19

I *I. .. r P:I I ..



Richards Vision Algorithms
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